Journal articles
(For a full list, please refer to my Researchgate
Li P, Zha Y, Zhang Y, et al. Deep learning integrating scale conversion and pedo‐transfer function to avoid potential errors in cross‐scale transfer[J]. Water Resources Research, 2024, 60(3): e2023WR035543. https://doi.org/10.1029/2023WR035543.
Li, P., Zha, Y., Zuo, B., & Zhang, Y. (2023). A family of soil water retention models based on sigmoid functions. Water Resources Research, 59, e2022WR033160. https://doi.org/10.1029/2022WR033160.
Li, P., Zha, Y., Shi, L., Tso, C. H. M., Zhang, Y., & Zeng, W. (2020). Comparison of the use of a physical-based model with data assimilation and machine learning methods for simulating soil water dynamics. Journal of Hydrology, 584, 124692. https://doi.org/10.1016/j.jhydrol.2020.124692
Li, P., Zha, Y., Tso, C. H. M., Shi, L., Yu, D., Zhang, Y., & Zeng, W. (2020). Data assimilation of uncalibrated soil moisture measurements from frequency-domain reflectometry. Geoderma, 374, 114432. https://doi.org/10.1016/j.geoderma.2020.114432
- Li, P., Zha, Y., & Tso, C.-H. M. (2023). Reconstructing GRACE-derived terrestrial water storage anomalies with in-situ groundwater level measurements and meteorological forcing data. Journal of Hydrology: Regional Studies, 50, 101528. https://doi.org/10.1016/j.ejrh.2023.101528
Li, P., Zha, Y., Shi, L., & Zhong, H. (2021). Identification of the terrestrial water storage change features in the North China Plain via independent component analysis. Journal of Hydrology: Regional Studies, 38, 100955. https://doi.org/10.1016/j.ejrh.2021.100955
Li, P., Zha, Y., Shi, L., & Zhong, H. (2022). Assessing the Global Relationships Between Teleconnection Factors and Terrestrial Water Storage Components. Water Resources Management, 36, 119–133. https://doi.org/10.1007/s11269-021-03015-x
- Yin, W., Yang, S., Hu, L., Tian, S., Wang, X., Zhao, R., & Li, P. (2022). Improving understanding of spatiotemporal water storage changes over China based on multiple datasets. Journal of Hydrology, 612, 128098. https://doi.org/10.1016/j.jhydrol.2022.128098
Conferences
- Li, P., Zha, Y., Tso, C. H. M., Shi, L., Yu, D., Zhang, Y., Zeng, W., Peng, J. (2023) Bias detection of ISMN soil moisture measurements through soil water balance model and data assimilation. EGU General Assembly 2023, Vienna, Austria.